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Abstract 
The purpose of this article is to introduce a simple Internet tool (Java applet) for PID controller design. 
The applet is based on the Nyquist plot shaping method which seems to be worthwhile for industrial 
practitioners.  
 
1.       Introduction 

 

PID controllers are widely used in industrial practice more than 60 years. The development went from 
pneumatic through analogue to digital controllers, but the control algorithm is in fact the same. The 
PID controller is a standard and proved solution for the most of industrial control applications. In spite 
of this fact, there is not some standard and generally accepted method for PID controller design based 
on known process model.  
 
Over the years, there are many formulas derived to tune the PID controller. But there exist only a few 
universal procedures, which can be used for arbitrary order irrational or non-minimum phase transfer 
functions. One of these is described in [1]. The classical D-partition [2] method is used for the ideal 
PID controller design where the gain and phase margins are specified. For the real PID controller 
(filtered derivative part) and for more general design specifications, this method must be modified as it 
is shown in parts 2 and 3. The arising algorithm seems to be universal and still comprehensible for 
people in industrial practice. That is why we decided to create a Java applet accessible on Internet. The 
applet is shortly described in part 4. Illustrating example is given in part 5. 
 
2. Design method principle  
 

Consider the control loop shown in figure 1 with the PI(D) controller C(s) and the plant described by  
a stable transfer function P(s). 

 

 
Fig. 1 Control loop 

 
Variables w, e and y denote setpoint, control error and process variable, respectively. Variables l and n 
denote disturbances affecting the control loop. 
 
It is well known, that required loop performance (e. g. gain and phase margins) could be reached by 
shaping of the Nyquist plot 

( ) ( ) ( )L j C j P jω ω ω= .          (1) 
For example, the minimum gain margin 2 (Gm>2) and minimum phase margin 60˚ (Pm ≥ 60˚) are 
equivalent with requirement, that points X1 = -1/2 and 2 1/ 2(1 3)X j= − + in fig. 2 should lie on the 
left side of ( )L jω or just on this curve. If Gm < 3 and Pm < 90˚ are required, the points X3= -1/3 and 
X4 = -j should lie on the right side of ( )L jω . In such way the points X1, X2,, X3, X4 define required 
Nyquist plot shape. 
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Similarly, one can proceed with, if the restriction of the sensitivity function  
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is required in a form  
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or if the restriction of the complementary sensitivity function  
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is required in a form 
sup | ( ) | pT j M

ω
ω ≤ .      (3) 

It can be simply proved, that condition (2) (resp. (3)) is equivalent with requirement that the Nyquist 
plot ( )L jω does not have any intersect with a circle having center 
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Now, consider the case, when only one shaping point X = u+jv is specified in the Nyquist plot plane. 
Our aim is to find all possible combinations of parameters k, ki of the PI controller with transfer 
function 

( ) ikC s k
s

= + , 

which ensure, that the point X lies on the left side of the Nyquist curve. For this purpose, let us solve 
an equation 

( ) ( )( ( ) ( ))ikL j k j a jb u jvω ω ω
ω

= − + = +    (6) 

for unknown k and ki, where ( ) Re( ( ))a P jω ω= and ( ) Im( ( ))b P jω ω= .  
The relations obtained  
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define parametric curve in the PI parameters  k, ki plane. This curve together with k, ki axis splits the 
parametric plane into several regions as it is shown in fig. 2b. We are interested only in positive values 
of k, ki in the first quadrant. It follows from (6) that the region border corresponds with PI parameters 
leading to the Nyquist plot passing through the X point. All points inside any region lead to the 
Nyquist plot having point X at the same side. More precisely, the number of encirclements of the point 
X by the Nyquist plot is the same.  Usually just one region contains suitable points corresponding to 
the required location of the Nyquist plot and the point X. 
 
Any Nyquist plot shaping problem with a finite number of shaping points could be transferred to the 
one-point case described above. If we find corresponding regions Ri for all points Xi, i=1,2,…,n , than 
their intersection  
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contains all points solving our problem. It is suitable to choose a point with the maximum ki coordinate 
from all possible solutions. The PI controller has then a maximum gain in low frequencies and also 
minimizes the criterion 

0

( )IE e t dt
+∞

= ∫ , 

when the step is applied on the closed loop set point. 
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(a)      (b) 
Fig. 2 (a) Nyquist plot shaping (b) Curve (7) and corresponding regions 

 
3. PID controller design 
 

In this part, the method presented above is used for a real 2DOF PID controller design. The controller 
is in according to ISA norm described by the relation 
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where Y(s), W(s) and U(s) denote images of process variable, set point and manipulated variable. 
Further k denotes gain, Ti and Td are integral and derivative time constants, b and c are weight 
coefficients of the set point in proportional and derivative part, and parameter N specifies the degree of 
derivative part filtering. It follows from relation (8), that the closed loop stability and disturbance 
response are dependent only on parameters k, Ti , Td and N, while the closed loop response can be 
independently influenced by the parameters b and c. That is why the controller design could be 
divided into two steps. Firstly, we design the 1DOF PID controller (b = c = 1) described by the 
transfer function 
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      (9) 

and then we tune parameters b and c manually ( 1,0∈b  and  c=0  are recommended). Since the 
controller (9) has four design parameters k, Ti , Td and N, we relate them by additional conditions, so 
that the parameter plane method could be used. Parameter N has the clear physical interpretation. 
When ∞→N , we obtain an ideal PID controller, while the derivative part is switched off if 0→N . 
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The value of N is usually chosen in the interval 1,10  according to the noise in process variable. The 
ratio f =Td / Ti is often equal to ¼ [4]. Newer studies [3] acknowledged correctness of this value 
especially for plants with a monotone step response. Note, that f = 0 leads to PI controller and f > 1/4 
enhances the derivative part. When N and f are constant, we only need to determine two parameters k 
and ki = k /Ti like in part 2. Computation of region borders is much more complicated but the design 
technique can be used without changes. The rule of optimal parameters choice is also the same: the 
optimal point has a maximum ki coordinate. More details could be found in [5]. 
 
4. User description of the applet 
 

Let us shortly describe the graphical user interface of the applet, which is free accessible on 
www.PIDlab.com  
The applet area is divided into five basic windows (fig. 3) 
 

 
 

Fig. 3 General view of the applet 
 

1) Process model (PM) 
In this window, we can specify a new process model (transfer function) using one of four ways 
selected right in the middle. We can specify coefficients of numerator and denominator of the transfer 
function, time constants or zeroes and poles. The last possibility is the “second order plus dead time” 
form. All forms can be complemented by the gain and the transport delay. The new process model 
should always be confirmed by OK button. 
 
1) Controller (C) 
It is possible to set all parameters of the 2DOF ISA PID controller by hand. The controller design is 
divided into following steps. 
 



1) Define new process model 
2) Choose type of the controller (PI/PID). Choose the parameters N and f. 
3) Define design specifications in the Nyquist plot plane (DS window). 
4) By clicking on any point in satisfactory region in the RP window (the intersection of all 

regions corresponding to design specifications) we obtain the parameters k and ki and related 
Ti, Td. 

5) Finally, we can change all parameters by hand. Especially decreasing of the parameter b could 
cause a lower overshot in closed loop. 

 
 

3) Design specifications (DS) 
In this window, we can specify general requirements on Nyquist plot shape using shaping points. We 
can easily specify gain and phase margins or a restriction of the (complementary) sensitivity function 
by special choice of these points. Points could be added by left mouse button click. All points are 
listed in the design specifications list. All points can be edited manually after selection in this list. 
Gain and phase margins can be easily specified (with the gain and phase margins checkbox 
checked) on the unit circle resp. on the negative real axis.  
 
4) Robustness regions in PID parameter plane (RP) 
This window is active only if at least one design specification is defined. The regions corresponding to 
design specifications are painted in this window. We need to click here to choose or change controller 
parameters k and ki.  
 
5) Loop performance (LP) 
One of four graphs can be chosen in this window. The process step response is painted when new 
process is defined. Other graphs are available only if all controller parameters are specified. We can 
choose the closed loop set point and load disturbance step response, the sensitivity function or the 
complementary sensitivity function.  
 
Graph Axes 
We can change the axes ranges with buttons under each graph if zoom checkbox is checked. When we 
press the auto button, ranges are set automatically. The best way to zoom is to define the zoom 
rectangle by mouse dragging.  
  
Settings and status line 
In a lower part of the applet is the settings panel. Here we can change the frequency ranges for all 
characteristics. We can also set the simulation time and the period of discretization of the process and 
the controller (used for simulation). 
 
The status line can be very useful. Actual applet state information as so as short help about important 
components are printed here. 
 
5. Practical example 
Let us use the applet for brick press controller design. The brick press is described by the transfer 
function 
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The controller design is divided into following steps. 
 
1) Process model definition  
We specify time the constants, gain and 
transport delay in BODE form. After 
that, we need to confirm new model by 
the OK button. 
 



 
 

 
2) Design specifications  
We use default values of controller type 
(PID), N and f. Then we specify gain 
and phase margins (Pm=60, Gm=2) by 
mouse clicking in DS window. We can 
set the Pm and Gm values more precisely 
manually after selection in design 
specifications list.  
 
 
 
If we want to see sensitivity and 
complementary sensitivity functions 
restrictions (so called m-circles), we 
must check the m-circles checkbox. The 
required Nyquist plot shaping can be 
reached by choosing points on these 
circles.  
 

 
 
 
 
 
 

 
 
 
 
3)    Choice of PID controller parameters Kp, Ki in parameter plane 
 
We will see two regions corresponding 
to the gain and phase margins shaping 
points. The region actually selected in 
design specification list is painted by red 
color. If we want to fulfill both 
conditions, we must choose the 
parameters at the regions intersect by 
mouse clicking. 
 
 
 
 
 
 
 
4)  Manual tuning of PID parameters 
We will see all PID parameters after 
clicking in RP window. Parameters b 
and c are set at default values b = 1, c = 
0. If we set the parameter b = 0.3, the 
closed loop behavior will be without 
overshot. We see the closed loop 



response in LP window. The process variable is painted blue and the manipulating variable is painted 
green. 
 
Finally, we can ensure that the Nyquist plot passes through both points and the closed loop has 
required performance. 
 

 
 
Let us look now, how the region shape depends on values N and f. Note that the shape is strongly 
influenced (mainly for processes without dead time) by the value of derivative part filter parameter N. 
It is clear, that most of methods based on ideal PID controller will not work properly, because the 
influence of N can not be ignored. 

 

(a) (b) 
Fig. 4 Dependency of the shape of the region on values N and  f  for process 1/(s+1)3 

with time delay 10 (4a) resp. 0 (4b) and shaping point X2  (Pm = 60˚). 
5. Conclusion 
The main purpose of this paper is to introduce a new tool for the PID controller design (free accessible 
Java applet on www.pidlab.com) based on new Nyquist plot shaping method. This method allows to 
design the real 2DOF PID controller for practical requirements, e. g. gain and phase margins. But the 
method allows to specify more complicated Nyquist plot shape requirements. The method is usable for 
any linear system (unstable, non-minimum phase, with or without dead time). This method is useful 
especially for stable non-oscillatory or slightly oscillatory processes, where the Nyquist plot shape 
requirements are well known. 
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